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STAT347: Generalized Linear Models

Lecture 4

Today’s topics: Chapters 4.5, 4.7

• Computation of the ML estimate

• Example: building a GLM

1 Computation

Log-likelihood:

L(β) =
∑
i

[yiθi − b(θi)] +
∑
i

log f0(yi)

Score equation:
L̇(β) = XTDV −1(y − µ) = 0

1.1 Newton’s method

Second-order approximation of L(β)

L(β) ≈ L(β(t)) + L̇(β(t))(β − β(t)) +
1

2
(β − β(t))T L̈(β(t))(β − β(t))

at tth iteration. If L̈(β(t)) � 0, then maximizing the second-order approximation is equivalent to solving

L̇(β) ≈ L̇(β(t)) + L̈(β(t))(β − β(t)) = 0

We have
β(t+1) = β(t) − L̈(β(t))−1L̇(β(t))

• Newton’s method is a general algorithm for optimizing twice-differentiable functions.

• Converge to the global maximum if L(β) is strongly concave

– If g(·) is the canonical link, then L(β) is concave in β

−L̈(β(t)) = XTW (t)X = XTV (t)X = −E
(
L̈(β(t))

)
� 0

– If g(·) is a general link, then L(β) is NOT guaranteed to be concave in β

– If −L̈(β(t)) is not non-negative, than step i does not maximize the quadratic approximation and
Newton’s method may not converge.

– We can use another quadratic approximation that works better in practice: Fisher scoring method
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1.2 Fisher scoring method

In lecture 2, we showed that −E
(
L̈(β)

)
� 0 for any β.

Instead of using the Hessian L̈(β(t)), use its expectation

J (t) = E
(
L̈(β(t))

)
= −XTW (t)X

instead of L̈(β(t)) itself in the second-order approximation. Each iteration becomes:

β(t+1) = β(t) −
(
J (t)

)−1
L̇(β(t))

1.3 Iteratively reweighted least squares (IRLS)

Recall the score equation:
L̇(β) = XTDV −1(y − µ) = 0

where V = diag(Var(y1), · · · ,Var(yn)) and D = diag (g′(µ1), · · · , g′(µn))
−1

, y = (y1, · · · , yn) and µ =
(µ1, · · · , µn).

Also in lecture 2, we used the notation ηi = XT
i β = g(µi). Thus, D = diag

(
∂µ1

∂η1
, · · · , ∂µn

∂ηn

)
. We also defined

the diagnoal matrix W = D2V −1. Thus,

L̇(β) = XTDV −1(y − µ) = XTWD−1(y − µ)

We can make a first order approximation of µ

µ = µ(t) +D(t)(µ− µ(t))

then
L̇(β) ≈ XTW (t)(z(t) −Xβ)

where

z(t) = Xβ(t) +
(
D(t)

)−1
(y − µ(t))

is a linear approximation of η at the tth iteration.

Thus, at the t+ 1th iteration, we solve

XTW (t)(z(t) −Xβ) = 0

which can be considered as a weighted linear regression with observations z
(t)
i and weight wi for each sample

i.

• IRLS is equivalent to Fisher scoring, see Section 4.5.4

• weight matrix W (t) ≈ Var
(
z(t)
)−1

Next time: Chapter 5.1 - 5.2, binary data model, application scenarios


