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STAT347: Generalized Linear Models

Lecture 10

Today’s topics: Chapters 7.3-7.5

• Negative Binomial GLM

• Zero inflated models: ZIP, ZINB and hurdle models

• Revisit the example of the horseshoe crab dataset

1 Model for over-dispersed counts: Negative Binomial GLM

Think about the scenario yi ∼ Poisson(λi) but log(λi) = XT
i β + εi indicating that Xi can not fully explain

λi. Then
E(yi) = E[E(yi | λi)] = E(λi)

while
Var(yi) = E[Var(yi | λi)] + Var[E(yi | λi)] = E(λi) + Var(λi) > E(yi)

which show an over-dispersion of the distribution of yi compared with a Poisson distribution.

Negative binomial distribution: y ∼ Poisson(λ) and λ ∼ Gamma(µ). The probability function of y is

f(y;µ, k) =
Γ(y + k)

Γ(k)Γ(y + 1)

(
µ
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)y (
k

µ+ k

)k
where γ = 1/k is called a dispersion parameter. We have

E(y) = µ, Var(y) = µ+ γµ2

Negative Binomial GLM:

We assume yi ∼ NB(µi, ki), with the link function g(µi) = XT
i β. Typically, we assume they share the same

dispersion, so γi = 1/ki ≡ γ for all i.

The benefit of using a Negative Binomial distribution is that it has an extra parameter to model the variance
of yi.

As an extension of Poisson GLM, a common link function is the log link: g(µi) = log(µi).

We can write down the log-likelihood, get score equations, and approximate variance of β̂ also for Negative
Binomial GLM. The Negative Binomial distribution belongs to the exponential dispersion family. We omit
all the details here. If you are interested to know more, you can read Chapter 7.3.

2 Models for zero-inflated counts

For a Poisson distribution y ∼ Poisson(µ): P (y = 0) = e−µ

For a Negative Binomial distribution y ∼ NB(µ, k): P (y = 0) =
(

k
µ+k

)k
In practice, there may be way more 0 counts than what these distributions can allow. Example: yi is the
number of times going to a gym for the past week and there may be a substantial proportion who never
exercise (you may see two modes in the distribution).
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2.1 Zero-inflated Poisson / Negative Binomial (ZIP/ZINB) models

The ZIP model:

yi ∼

{
0 with probability 1− φi
Poisson(λi) with probability φi

We can interpret this as having a latent binary variable ZiBernoulli(φi). If zi = 0 then yi = 0, and if zi = 1
then yi follows a Poisson distribution. For the GLM model, a common assumption for the links are:

logit(φi) = XT
1iβ1, log(λi) = XT

2iβ2

• The mean is E(yi) = φiλi and the variance is

Var(yi) = φiλi[1 + (1− φi)λi] > E(yi)

So zero-inflation can also cause over-dispersion

• We may still see over-dispersion conditional on Zi, then we can use a ZINB model where

yi ∼

{
0 with probability 1− φi
NB(λi, k) with probability φi

• We can use MLE to solve both the ZIP and ZINB model.

2.2 Hurdle model

The ZIP/ZINB model do not allow zero deflation. The Hurdle model separates the analysis of zero counts
and positive counts.

Let

y′i =

{
0 if yi = 0

1 if yi > 0

The Hurdle model assumes that y′i ∼ Bernoulli(φi) and yi | yi > 0 follows a truncated-at-zero Pois-
son/Negative Binomial distribution. Basically, we assume there is another y′′i ∼ Poisson(λi) and yi = y′′i
when yi > 0. Let the untruncated probability function be f(yi;λi), then

P (yi = k) = φi
f(k;µi)

1− f(k;µi)

For the GLM, we may assume
logitφi = XT

1iβi, log(λi) = XT
2iβ2

• We can estimate βi and β2 separately using two separate likelihoods.

• There is zero deflation if φi ≤ f(0;µi)

3 Examples for the contingency table, over-dispersed and zero-
inflated data

Chapters 7.2.6, 7.5.2


