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STAT347: Generalized Linear Models

Lecture 9

Today’s topics: Chapters 7.1 and 7.2

• Poisson loglinear model

• Poisson modeling for contingency tables

1 Poisson loglinear model

Poisson distribution density function is

f(y) = e−µµy/y! = ey log µ−µ/y!

Loglinear model: use the canonical link
logµi = XT

i β

Or equivalently, µi = (eβ1)xi1 · · · (eβp)xip , assuming that each xij has a multiplicative effect on yi.

• Estimated variance of β̂: v̂ar(β̂) = (XT ŴX)−1. Each diagonal element wii = vii = var(yi) = µi

• Residual deviance:

D+(y, µ̂) = 2

n∑
i=1

[
yi log

(
yi
µ̂i

)
− yi + µ̂i

]
• Offset: forcing the coefficient of a variable to be 1.

Example: modeling rates, yi crime counts and ti the total population within each county, and we
assume

log(µi/ti) = XT
i β

or equivalently log(µi) = log(ti) + XT
i β. the adjustment term log(ti) is called an offset as we do not

need to estimate its coefficient.

2 Poisson modeling for contingency tables

For independent Poisson counts (y1, · · · , yc), the total n =
∑
i yi follows a Poisson distribution with mean∑

i µi. Conditional on the total n, the conditional joint distribution is

P (y1 = n1, · · · , yc = nc)

P (
∑
i yi = n)

=

(
n!∏
i ni!

) c∏
i=1

pni
i

and it follows a multinomial distribution.

• This indicates that we can view the data equivalently as there are n i.i.d. samples and each sample
follows a multinomial distribution to choose one of the cells.
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2.1 one-way layout

Analogous to ANOVA, consider a one-way layout for the count response. Assume that each cell i ∈
{1, 2, · · · , c} has ni repeated observations. Then the Poisson model is

log(µij) = β0 + βi, j = 1, 2, · · · , ni

2.2 Two-way contingency table

Consider an r×c table for two categorical variables (denote as A and B). The Poisson GLM assumes that the
count yij in each cell independently follows a Poisson distributions with mean µij . Consider two scenarios:

2.2.1 Two categorical variables are independent

If we assume that the two categorical variables are independent, then we can assume

µij = µφiψj

Equivalently, we can assume that
logµij = β0 + βAi + βBj

This model has a [1 + (r − 1) + (c− 1)] free parameters (degree of freedom).

The non-constant part of the log-likelihood is

L(µ) =

r∑
i=1

c∑
j=1

yij logµij −
r∑
i=1

c∑
j=1

µij

The we used the canonical link, the score equations should be∑
i,j

(yij − µij) = 0

∑
j

(yij − µij) = 0, i = 1, 2, · · · , r

∑
i

(yij − µij) = 0, j = 1, 2, · · · , c

Thus we get the MLE: µ̂ = y++, φ̂i = yi+/y++ and ψ̂j = y+j/y++.

We can also write down the likelihood conditional on n, and we get the same MLE (Chapter 7.2.2).

2.2.2 Two categorical variables has an interaction

We can assume
logµij = β0 + βAi + βBj + γABij

• We need identifiability conditions such as γAB1j = γABi1 = 0 for identifiability.

• In total adds (r − 1)× c− 1 more parameters

• This model is saturated

• The interactions pertain to odds ratios. For instance, r = c = 2

log
p11/p12
p21/p22

= log
µ11/µ12

µ21/µ22
= γAB11 + γAB22 − γAB12 − γAB21

Under our previous identification condition, the odds ratio is eγ
AB
22
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2.3 Three-way contingency table

Consider an r × c× l table. Assume that for an individual sample

• Mutual independence

P (A = i, B = j, C = k) = P (A = i)P (B = j)P (C = k)

Equivalently, the loglinear form is

logµijk = β0 + βAi + βBj + βCk

• Joint independence
P (A = i, B = j, C = k) = P (A = i)P (B = j, C = k)

Equivalently, the loglinear form is

logµijk = β0 + βAi + βBj + βCk + γBCjk

• Conditional independence

P (A = i, B = j | C = k) = P (A = i | C = k)P (B = j | C = k)

Equivalently, the loglinear form is

logµijk = β0 + βAi + βBj + βCk + γACik + γBCjk

• Homogeneous association

logµijk = β0 + βAi + βBj + βCk + γACik + γBCjk + γABij

An interpretation of this model is that any two pairs are dependent, but the dependence does not
change with the value of the third variable.

3 Connection with binomial/multinomial regression models

• The log-linear model treat all categorical variables symmetrically and regard the cells as response

• The logistic models distinguish between response and categorical variables

Consider the case where r = 2 and treat it as the response variable for a logistic regression. Then start from
the loglinear model, we have

log
P (A = 1 | B = j, C = k)

P (A = 2 | B = j, C = k)
= logµ1jk − logµ2jk

= (βA1 − βA2 ) + (γAB1j − γAB2j ) + (γAC1j − γAC2j )

Equivalently, we have the model

logit[P (A = 1 | B = j, C = k)] = λ+ δBj + δCk

which is a logistic regression model

• The Poisson loglinear model and binomial logistic model also have the same score equations

• The same results hold for the multinomial baseline-category logit model

Next time: Chapters 7.3-7.5


