# STAT347: Generalized Linear Models <br> Lecture 9 

Today's topics: Chapters 7.1 and 7.2

- Poisson loglinear model
- Poisson modeling for contingency tables


## 1 Poisson loglinear model

Poisson distribution density function is

$$
f(y)=e^{-\mu} \mu^{y} / y!=e^{y \log \mu-\mu} / y!
$$

Loglinear model: use the canonical link

$$
\log \mu_{i}=X_{i}^{T} \beta
$$

Or equivalently, $\mu_{i}=\left(e^{\beta_{1}}\right)^{x_{i 1}} \cdots\left(e^{\beta_{p}}\right)^{x_{i p}}$, assuming that each $x_{i j}$ has a multiplicative effect on $y_{i}$.

- Estimated variance of $\hat{\beta}: \widehat{\operatorname{var}}(\hat{\beta})=\left(X^{T} \hat{W} X\right)^{-1}$. Each diagonal element $w_{i i}=v_{i i}=\operatorname{var}\left(y_{i}\right)=\mu_{i}$
- Residual deviance:

$$
D_{+}(y, \hat{\mu})=2 \sum_{i=1}^{n}\left[y_{i} \log \left(\frac{y_{i}}{\hat{\mu}_{i}}\right)-y_{i}+\hat{\mu}_{i}\right]
$$

- Offset: forcing the coefficient of a variable to be 1.

Example: modeling rates, $y_{i}$ crime counts and $t_{i}$ the total population within each county, and we assume

$$
\log \left(\mu_{i} / t_{i}\right)=X_{i}^{T} \beta
$$

or equivalently $\log \left(\mu_{i}\right)=\log \left(t_{i}\right)+X_{i}^{T} \beta$. the adjustment term $\log \left(t_{i}\right)$ is called an offset as we do not need to estimate its coefficient.

## 2 Poisson modeling for contingency tables

For independent Poisson counts $\left(y_{1}, \cdots, y_{c}\right)$, the total $n=\sum_{i} y_{i}$ follows a Poisson distribution with mean $\sum_{i} \mu_{i}$. Conditional on the total $n$, the conditional joint distribution is

$$
\frac{P\left(y_{1}=n_{1}, \cdots, y_{c}=n_{c}\right)}{P\left(\sum_{i} y_{i}=n\right)}=\left(\frac{n!}{\prod_{i} n_{i}!}\right) \prod_{i=1}^{c} p_{i}^{n_{i}}
$$

and it follows a multinomial distribution.

- This indicates that we can view the data equivalently as there are $n$ i.i.d. samples and each sample follows a multinomial distribution to choose one of the cells.


## 2.1 one-way layout

Analogous to ANOVA, consider a one-way layout for the count response. Assume that each cell $i \in$ $\{1,2, \cdots, c\}$ has $n_{i}$ repeated observations. Then the Poisson model is

$$
\log \left(\mu_{i j}\right)=\beta_{0}+\beta_{i}, \quad j=1,2, \cdots, n_{i}
$$

### 2.2 Two-way contingency table

Consider an $r \times c$ table for two categorical variables (denote as $A$ and $B$ ). The Poisson GLM assumes that the count $y_{i j}$ in each cell independently follows a Poisson distributions with mean $\mu_{i j}$. Consider two scenarios:

### 2.2.1 Two categorical variables are independent

If we assume that the two categorical variables are independent, then we can assume

$$
\mu_{i j}=\mu \phi_{i} \psi_{j}
$$

Equivalently, we can assume that

$$
\log \mu_{i j}=\beta_{0}+\beta_{i}^{A}+\beta_{j}^{B}
$$

This model has a $[1+(r-1)+(c-1)]$ free parameters (degree of freedom).
The non-constant part of the log-likelihood is

$$
L(\mu)=\sum_{i=1}^{r} \sum_{j=1}^{c} y_{i j} \log \mu_{i j}-\sum_{i=1}^{r} \sum_{j=1}^{c} \mu_{i j}
$$

The we used the canonical link, the score equations should be

$$
\begin{gathered}
\sum_{i, j}\left(y_{i j}-\mu_{i j}\right)=0 \\
\sum_{j}\left(y_{i j}-\mu_{i j}\right)=0, \quad i=1,2, \cdots, r \\
\sum_{i}\left(y_{i j}-\mu_{i j}\right)=0, \quad j=1,2, \cdots, c
\end{gathered}
$$

Thus we get the MLE: $\hat{\mu}=y_{++}, \hat{\phi}_{i}=y_{i+} / y_{++}$and $\hat{\psi}_{j}=y_{+j} / y_{++}$.
We can also write down the likelihood conditional on $n$, and we get the same MLE (Chapter 7.2.2).

### 2.2.2 Two categorical variables has an interaction

We can assume

$$
\log \mu_{i j}=\beta_{0}+\beta_{i}^{A}+\beta_{j}^{B}+\gamma_{i j}^{A B}
$$

- We need identifiability conditions such as $\gamma_{1 j}^{A B}=\gamma_{i 1}^{A B}=0$ for identifiability.
- In total adds $(r-1) \times c-1$ more parameters
- This model is saturated
- The interactions pertain to odds ratios. For instance, $r=c=2$

$$
\log \frac{p_{11} / p_{12}}{p_{21} / p_{22}}=\log \frac{\mu_{11} / \mu_{12}}{\mu_{21} / \mu_{22}}=\gamma_{11}^{A B}+\gamma_{22}^{A B}-\gamma_{12}^{A B}-\gamma_{21}^{A B}
$$

Under our previous identification condition, the odds ratio is $e^{\gamma_{22}^{A B}}$

### 2.3 Three-way contingency table

Consider an $r \times c \times l$ table. Assume that for an individual sample

- Mutual independence

$$
P(A=i, B=j, C=k)=P(A=i) P(B=j) P(C=k)
$$

Equivalently, the loglinear form is

$$
\log \mu_{i j k}=\beta_{0}+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}
$$

- Joint independence

$$
P(A=i, B=j, C=k)=P(A=i) P(B=j, C=k)
$$

Equivalently, the loglinear form is

$$
\log \mu_{i j k}=\beta_{0}+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\gamma_{j k}^{B C}
$$

- Conditional independence

$$
P(A=i, B=j \mid C=k)=P(A=i \mid C=k) P(B=j \mid C=k)
$$

Equivalently, the loglinear form is

$$
\log \mu_{i j k}=\beta_{0}+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\gamma_{i k}^{A C}+\gamma_{j k}^{B C}
$$

- Homogeneous association

$$
\log \mu_{i j k}=\beta_{0}+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\gamma_{i k}^{A C}+\gamma_{j k}^{B C}+\gamma_{i j}^{A B}
$$

An interpretation of this model is that any two pairs are dependent, but the dependence does not change with the value of the third variable.

## 3 Connection with binomial/multinomial regression models

- The log-linear model treat all categorical variables symmetrically and regard the cells as response
- The logistic models distinguish between response and categorical variables

Consider the case where $r=2$ and treat it as the response variable for a logistic regression. Then start from the loglinear model, we have

$$
\begin{aligned}
\log \frac{P(A=1 \mid B=j, C=k)}{P(A=2 \mid B=j, C=k)} & =\log \mu_{1 j k}-\log \mu_{2 j k} \\
& =\left(\beta_{1}^{A}-\beta_{2}^{A}\right)+\left(\gamma_{1 j}^{A B}-\gamma_{2 j}^{A B}\right)+\left(\gamma_{1 j}^{A C}-\gamma_{2 j}^{A C}\right)
\end{aligned}
$$

Equivalently, we have the model

$$
\operatorname{logit}[P(A=1 \mid B=j, C=k)]=\lambda+\delta_{j}^{B}+\delta_{k}^{C}
$$

which is a logistic regression model

- The Poisson loglinear model and binomial logistic model also have the same score equations
- The same results hold for the multinomial baseline-category logit model

