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STAT347: Generalized Linear Models

Lecture 7

Today’s topics: Chapter 6.1

• Nominal response: baseline-category logit model

– Model setup

– Multivariate GLM

– Model fitting

Multinomial response variables:

• Nominal response: c categories without orders

• Ordinal response: categories with orders: not satisfied, satisfied, very satisfied

How to model their relationship with the covariates?

Nominal responses: Baseline-Category logit model

Treat one multinomial response variable as multiple responses and build a model for each of these responses.

Assume for each sample, the multinomial response variable is

yi = (yi1, yi2, · · · , yic) ∼ Multinomial (ni, p = (pi1, pi2, · · · , pic))

1 Why using the logit link?

We can build a Binary GLM model for each pair of categories.

Select a baseline category (say category c), then we can build a binary GLM for each of 1, 2, · · · , c − 1
categories compared with category c. Basically, we assume

pik
pik + pic

= F (XT
i βk)

However, not every F is good to use. When we think that these categories are “exchangeable”, since the
choice of baseline category c is arbitrary, a desired property is that the model does not depend on which
category you choose as the baseline. Then, we need

1. For each k, there exist some β̃k such that

pic
pik + pic

= F (XT
i β̃k)

2. For any k1, k2 6= c, there exists some β̃k1k2 such that

pik1
pik1 + pik2

= F (XT
i β̃k1k2)
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• If F corresponds to the logit link, then the two requirements are satisfied as

pik
pic

= eX
T
i βk

This is called the baseline-category logit model.

• If there is a natural baseline category in some applications (categories not “exchangeable”), other links
can still be used.

Under the baseline-category logit model, we have

pik =
eX

T
i βk

1 +
∑c−1
h=1 e

XT
i βh

2 Multivariate GLM

Treating each pair is a logistic regression, we can get the asymptotic distribution of each β̂k.

• The β̂k for k = 1, 2, · · · , c categories are not independent (as yik are not)

• The β̂k may not be efficient ignoring other categories

• How to calculate the distribution of some function h(β̂1, · · · , β̂k) if needed? (For example, we may
want to know the distribution of p̂i1 − p̂i2)

We can generalize the univariate GLM to a multivariate GLM where yi = (yi1, yi2, · · · , yic) follows a multi-
variate exponential family distribution

f(yi; θi) = ey
T
i θi−b(θi)f0(yi)

where θi = (θi1, · · · , θic) and the link function is g(µi) = X̃iβ where X̃i is a matrix.

The multinomial distribution belongs to a multivariate exponential family. µi = (pi1, · · · , pic) but
∑
k pik =

1. We have for k = 1, 2, · · · , (c− 1)

gk(µi) = log {µik/[1− (µi1 + · · ·+ µi,c−1)]} .

For the form of X̃iβ, see Chapter 6.1.2 for more details.

3 Fitting baseline-category logit model

Consider the ungrouped data format and let N =
∑
i′ ni′ .

The joint log-likelihood for the multivariate GLM is

L(β; y) = log

[
N∏
i=1

(
c∏

k=1

pyikik

)]

=

N∑
i=1

{
c−1∑
k=1

yik log
pik
pic

+ log pic

}

=

N∑
i=1

{
c−1∑
k=1

yikX
T
i βk − log

(
1 +

c−1∑
h=1

eX
T
i βh

)}

=

c−1∑
k=1


p∑
j=1

βkj

(
N∑
i=1

yikxij

)−
N∑
i=1

{
log

(
1 +

c−1∑
h=1

eX
T
i βh

)}
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The score equations are

∂L

∂βkj
=

N∑
i=1

yikxij −
N∑
i=1

eX
T
i βkxij

1 +
∑c−1
h=1 e

XT
i βh

=

N∑
i=1

(yik − pik)xij = 0

which have the same forms as we saw before for canonical link.

For computation, we can find that Fisher-scoring is the same as Newton’s method (details omitted, see
Chapter 6.1.3).

4 Discrete-choice model

The Baseline-category logit model is closely related to the discrete-choice model in economics. If you are
interested, you can read Chapter 6.1.6, or for a brief explanation, read Imai’s slides on Discrete choice model
from our course website for a better explanation.


