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STAT347: Generalized Linear Models

Lecture 6

Today’s topics: Chapters 5.3 - 5.5, 5.7

• Binary GLM inference

• Fitting logistic regression and the infinite estimates

• Binary GLM example

1 Binary GLM model inference

We have already learnt the inference of a general GLM model, we now look what the specific forms are for
a binary GLM.

1.1 Score function

For logistic regression, as the logit link is the canonical link, the score equation is:
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For a binary GLM with other links, when pi = F (ηi) = F (XT
i β) as discussed in last lecture:
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1.2 Variance of β̂

We have derived that as n→∞
Var(β̂)→ (XTWX)−1

where W = D2V −1 is a diagonal matrix

For logistic regression where the logit link is the canonical link, W = V
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1.3 Hypothesis testing

Consider a simple case. Under the null model, the group data is
∑
i yi ∼ Binomial(N, p). We want to test

for H0 : β = logit(p0) (or equivalently: H0 : p ≡ p0) where β is the constant coefficient. Define y =
∑
i yi/N ,

then the MLE is p̂ = y. The test statistics are

Wald test: (
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)2

= [logit(y)− logit(p0)]2Ny(1− y),
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=
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Likelihood ratio test:
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• Wald test depends on the scale

• Wald test is less stable when y is close to 0 or 1. Read Chapter 5.3.3

1.4 Deviance

The total (residual) deviance for a binary GLM (the deviance between the saturated model and the fitted
model) is
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• The total deviance is different for grouped data and ungrouped data (as the saturated model is different)

• For grouped data, if represented by an n× 2 table

D+(y, µ̂) = 2
∑

observed × log(observed/fitted)

Chi-square goodness of fit test:

X2 =
∑ (observed − fitted)2

fitted
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2 Binary GLM computation

For logistic regression, Newton’s method = Fisher scoring = IRLS.

For IRLS, the tth iteration is
XTW (t)(z(t) −Xβ) = 0

where
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2.1 Infinite parameter estimates

One may sometimes see this warning message using R to solve the logistic regression:

Warning message: glm.fit: fitted probabilities numerically 0 or 1 occurred

You may see very large estimates of β. What happened?

• Perfect separation: If there exists βs such that if XT
i βs > 0 then yi = 1 otherwise yi = 0, then let

β = kβs.

When k →∞, then
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Thus, ∂L
∂β → 0 if k →∞ so the solution of the score equation is infinite

• Quasi-complete separation: If there exists βs such that if XT
i βs > 0 then yi = 1, if XT

i βs < 0 then
yi = 0, and if XT

i βs = 0 then yi = 0 or 1 (allow data points on the separation hyperplane with both
outcomes.

Let ηi = kXT
i βs + β0 where β0 is any arbitrary scalar. When k →∞, then
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So we still have ∂L
∂β → 0 for some β0 and k →∞, and we still have infinite ML estimates.

• How to deal with perfect/quasi-complete separation? Read Chapter 5.4.2

3 Example: risk factors for cancer

Chapter 5.7.1

Next time: Chapter 6.1, multivariate GLM: nominal response


