STAT347: Generalized Linear Models
Lecture 6

Today’s topics: Chapters 5.3 - 5.5, 5.7
e Binary GLM inference

e Fitting logistic regression and the infinite estimates

e Binary GLM example

1 Binary GLM model inference
We have already learnt the inference of a general GLM model, we now look what the specific forms are for

a binary GLM.

1.1 Score function

For logistic regression, as the logit link is the canonical link, the score equation is:
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For a binary GLM with other links, when p; = F(n;) = F(X} 3) as discussed in last lecture:
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1.2 Variance of B

We have derived that as n — oo R
Var(8) — (XTWwx)™!

where W = D2V ~! is a diagonal matrix
For logistic regression where the logit link is the canonical link, W =V
X8

Wi = nipi(l —pi)7 Wi = nzm

For a general link with p; = F(7;)
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1.3 Hypothesis testing

Consider a simple case. Under the null model, the group data is ), y; ~ Binomial(NV,p). We want to test
for Hy : 8 = logit(po) (or equivalently: Hy : p = po) where (3 is the constant coefficient. Define y = 3", y; /N,
then the MLE is p = y. The test statistics are

Wald test: )
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Likelihood ratio test:
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Score test:
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e Wald test depends on the scale

e Wald test is less stable when y is close to 0 or 1. Read Chapter 5.3.3

1.4 Deviance

The total (residual) deviance for a binary GLM (the deviance between the saturated model and the fitted
model) is
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e The total deviance is different for grouped data and ungrouped data (as the saturated model is different)

e For grouped data, if represented by an n x 2 table
D, (y, ) =2 Z observed x log(observed/fitted)

Chi-square goodness of fit test:
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2 Binary GLM computation

For logistic regression, Newton’s method = Fisher scoring = IRLS.

For IRLS, the tth iteration is
XTw® (0 - xp)=0

where
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2.1 Infinite parameter estimates

One may sometimes see this warning message using R to solve the logistic regression:
Warning message: glm.fit: fitted probabilities numerically 0 or 1 occurred

You may see very large estimates of 5. What happened?

e Perfect separation: If there exists 3¢ such that if X738, > 0 then y; = 1 otherwise y; = 0, then let
B = kBs.
When k — oo, then
eXi'8 {1 if X738, >0

14+ eXiB 0 else

Thus, g—g — 0 if £ — oo so the solution of the score equation is infinite

e Quasi-complete separation: If there exists B¢ such that if X8 > 0 then y; = 1, if X! 3, < 0 then
yi = 0, and if XTBs = 0 then y; = 0 or 1 (allow data points on the separation hyperplane with both
outcomes.

Let n; = kXI B + Bo where 3y is any arbitrary scalar. When k — oo, then

EXT B 4B, 1 if XI'B, >0
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So we still have % — 0 for some By and k — oo, and we still have infinite ML estimates.

e How to deal with perfect/quasi-complete separation? Read Chapter 5.4.2

3 Example: risk factors for cancer

Chapter 5.7.1

Next time: Chapter 6.1, multivariate GLM: nominal response



