STAT347: Generalized Linear Models
 Lecture 3

Today's topics: Chapters 4.3-4.4

- Hypothesis testing for β
- Deviance analysis of a GLM

1 Wald, likelihood-ratio and score tests

In last lecture, we have mentioned that when n is large

$$
\hat{\beta}-\beta_{0} \dot{\sim} N\left(0, V_{\beta_{0}}\right)
$$

How to test

$$
H_{0}: A \beta_{0}=a_{0} \quad \text { V.S. } \quad H_{1}: A \beta_{0} \neq a_{0}
$$

1.1 Wald test

Test statistics:

$$
T=\left(A \hat{\beta}-a_{0}\right)^{T}[\widehat{\operatorname{Var}}(A \hat{\beta})]^{-1}\left(A \hat{\beta}-a_{0}\right)
$$

- $\widehat{\operatorname{Var}}(A \hat{\beta})=A V_{\hat{\beta}} A^{T}$
- If $a_{0} \in \mathbb{R}^{1}$, Wald statistic can also be written as

$$
z=\frac{A \hat{\beta}-a_{0}}{\sqrt{\widehat{\operatorname{Var}}(A \hat{\beta})}}
$$

- Under H_{0}, Wald statistic $z \dot{\sim} N(0,1)$ and $T=z^{2} \dot{\sim} \mathcal{X}_{1}^{2}$
- When $a_{0} \in \mathbb{R}^{d}$, then under $H_{0}, T \dot{\sim} \mathcal{X}_{d}^{2}$
- This is the GLM R package output for the analysis of each component β_{j}

1.2 Likelihood ratio test

The likelihood ratio test statistics is

$$
-2 \log \Lambda=-2(L(\tilde{\beta})-L(\hat{\beta}))
$$

where $\tilde{\beta}$ is the MLE of β under the constraint $A \beta=a_{0}$, and $\hat{\beta}$ is our original MLE of β without any constraint. As $n \rightarrow \infty$,

$$
-2 \log \Lambda \rightarrow \mathcal{X}_{d}^{2}
$$

1.3 Score test

We consider a simpler case

$$
H_{0}: \beta=\beta_{0} \in \mathbb{R}^{p} \quad \text { V.S. } \quad H_{1}: \beta \neq \beta_{0}
$$

Last time:

$$
\operatorname{Var}(\dot{L}(\beta))=\mathbb{E}\left(\left(\frac{\partial L}{\partial \beta}\right)^{2}\right)=-\ddot{L}(\beta)
$$

where β is the true value of the parameter. Thus, under H_{0},

$$
\operatorname{Var}\left(\dot{L}\left(\beta_{0}\right)\right)=-\ddot{L}\left(\beta_{0}\right)
$$

Test statistics:

$$
T=-\dot{L}\left(\beta_{0}\right)^{T}\left(\ddot{L}\left(\beta_{0}\right)\right)^{-1} \dot{L}\left(\beta_{0}\right)
$$

Under $H_{0}, T \rightarrow \mathcal{X}_{p}^{2}$ when $n \rightarrow \infty$.

- Relationship among the three tests: Section 4.3.4
- Construct CI: invert tests (illustrate more in later lectures)

2 Deviance analysis

2.1 Definition (more general than the textbook)

Consider density function $f(y ; \theta)=e^{y \theta-b(\theta)} f_{0}(y)$ at two values θ_{1} and θ_{2}. Measure the "distance" between two distributions:

$$
\begin{aligned}
D\left(\theta_{1}, \theta_{2}\right)=2 \mathbb{E}_{\theta_{1}}\left\{\log \frac{f\left(y ; \theta_{1}\right)}{f\left(y ; \theta_{2}\right)}\right\} & =2 \mathbb{E}_{\theta_{1}}\left\{y\left(\theta_{1}-\theta_{2}\right)-b\left(\theta_{1}\right)+b\left(\theta_{2}\right)\right\} \\
& =2\left[\mu_{1}\left(\theta_{1}-\theta_{2}\right)-b\left(\theta_{1}\right)+b\left(\theta_{2}\right)\right]
\end{aligned}
$$

Remember the 1-to-1 mapping between μ and θ, we also write $D\left(\mu_{1}, \mu_{2}\right)=D\left(\theta_{\mu_{1}}, \theta_{\mu_{2}}\right)$

- Generally, $D\left(\mu_{1}, \mu_{2}\right) \neq D\left(\mu_{2}, \mu_{1}\right)$
- KL divergence: $D\left(\mu_{1}, \mu_{2}\right) / 2$
- If f is the normal density with $\sigma=1$, then $D\left(\mu_{1}, \mu_{2}\right)=\left(\mu_{1}-\mu_{2}\right)^{2}$

Deviance between the saturated model: $\hat{\mu}=y$ and another model with μ :

$$
D(y, \mu)=2\left[y\left(\theta_{y}-\theta\right)-b\left(\theta_{y}\right)+b(\theta)\right]=-2 \log \left[f(y, \theta) / f\left(y, \theta_{y}\right)\right]
$$

With samples $\left(X_{1}, y_{1}\right),\left(X_{2}, y_{2}\right), \cdots,\left(X_{n}, y_{n}\right)$, the total deviance in GLM (residual deviance, the deviance definition in the text book)

$$
\begin{aligned}
D_{+}(y, \hat{\mu}) & =\sum_{i} D\left(y_{i}, \hat{\mu}_{i}\right) \\
& =-2 \sum_{i} \log \left[f\left(y_{i}, \hat{\theta}_{i}\right) / f\left(y_{i}, \theta_{y_{i}}\right)\right]
\end{aligned}
$$

Null deviance:

$$
\sum_{i} D\left(y_{i}, \bar{y}\right)
$$

where $\bar{y}=\sum_{i} y_{i} / n$

2.2 Deviance analysis for nested models

Consider the canonical link $\theta=X \beta$ where $\beta \in \mathbb{R}^{p}$. Let $\beta=\binom{\beta^{(1)}}{\beta^{(2)}}$ where $\beta^{(1)} \in \mathbb{R}^{p_{1}}$ and $X=\left(\begin{array}{ll}X^{(1)} & X^{(2)}\end{array}\right)$.
We call $\mathcal{M}^{(1)}$ with

$$
\theta=X^{(1)} \beta^{(1)}
$$

a nested model of the full model \mathcal{M}. Let $\hat{\beta}^{(1)}$ be the MLE solution of the model $\mathcal{M}^{(\infty)}$ and $\hat{\mu}^{(1)}$ be the corresponding estimated expectation of y in the fitted model.
Then,

$$
D_{+}\left(y, \hat{\mu}^{(1)}\right)-D_{+}(y, \hat{\mu})=-2\left[L\left(\hat{\beta}^{(1)}\right)-L(\hat{\beta})\right]
$$

- Additivity theorem (Efron Annals 1978)

$$
D_{+}\left(\hat{\mu}, \hat{\mu}^{(1)}\right)=D_{+}\left(y, \hat{\mu}^{(1)}\right)-D_{+}(y, \hat{\mu})
$$

- Need to prove that $\sum_{i}\left(y_{i}-\hat{\mu}_{i}\right)\left(\theta_{\hat{\mu}_{i}}-\theta_{\hat{\mu}_{i}^{(1)}}\right)=0$
- Geometric interpretation for linear OLS
- Test for $H_{0}: \beta^{(2)}=0$. Under H_{0},

$$
D_{+}\left(\hat{\mu}, \hat{\mu}^{(1)}\right)=D_{+}\left(y, \hat{\mu}^{(1)}\right)-D_{+}(y, \hat{\mu}) \rightarrow \mathcal{X}_{p-p_{1}}^{2}
$$

- R^{2} in GLM:

$$
1-\frac{D_{+}(y, \hat{\mu})}{\sum_{i} D\left(y_{i}, \bar{y}\right)}
$$

- Deviance analysis table

Next time: Chapter 4.5 and 4.7, computation, building GLM example

