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STAT347: Generalized Linear Models

Lecture 3

Today’s topics: Chapters 4.3-4.4

• Hypothesis testing for β

• Deviance analysis of a GLM

1 Wald, likelihood-ratio and score tests

In last lecture, we have mentioned that when n is large

β̂ − β0
·∼ N(0, Vβ0)

How to test
H0 : Aβ0 = a0 V.S. H1 : Aβ0 6= a0

1.1 Wald test

Test statistics:

T = (Aβ̂ − a0)T
[
V̂ar(Aβ̂)

]−1
(Aβ̂ − a0)

• V̂ar(Aβ̂) = AVβ̂A
T

• If a0 ∈ R1, Wald statistic can also be written as

z =
Aβ̂ − a0√
V̂ar(Aβ̂)

• Under H0, Wald statistic z
·∼ N(0, 1) and T = z2

·∼ X 2
1

• When a0 ∈ Rd, then under H0, T
·∼ X 2

d

• This is the GLM R package output for the analysis of each component βj

1.2 Likelihood ratio test

The likelihood ratio test statistics is

−2 log Λ = −2
(
L(β̃)− L(β̂)

)
where β̃ is the MLE of β under the constraint Aβ = a0, and β̂ is our original MLE of β without any
constraint. As n→∞,

−2 log Λ→ X 2
d
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1.3 Score test

We consider a simpler case
H0 : β = β0 ∈ Rp V.S. H1 : β 6= β0

Last time:

Var
(
L̇(β)

)
= E

((
∂L

∂β

)2
)

= −L̈(β)

where β is the true value of the parameter. Thus, under H0,

Var
(
L̇(β0)

)
= −L̈(β0)

Test statistics:

T = −L̇(β0)T
(
L̈(β0)

)−1
L̇(β0)

Under H0, T → X 2
p when n→∞.

• Relationship among the three tests: Section 4.3.4

• Construct CI: invert tests (illustrate more in later lectures)

2 Deviance analysis

2.1 Definition (more general than the textbook)

Consider density function f(y; θ) = eyθ−b(θ)f0(y) at two values θ1 and θ2. Measure the “distance” between
two distributions:

D(θ1, θ2) = 2Eθ1
{

log
f(y; θ1)

f(y; θ2)

}
= 2Eθ1 {y(θ1 − θ2)− b(θ1) + b(θ2)}

= 2 [µ1(θ1 − θ2)− b(θ1) + b(θ2)]

Remember the 1-to-1 mapping between µ and θ, we also write D(µ1, µ2) = D(θµ1
, θµ2

)

• Generally, D(µ1, µ2) 6= D(µ2, µ1)

• KL divergence: D(µ1, µ2)/2

• If f is the normal density with σ = 1, then D(µ1, µ2) = (µ1 − µ2)2

Deviance between the saturated model: µ̂ = y and another model with µ:

D(y, µ) = 2 [y(θy − θ)− b(θy) + b(θ)] = −2 log [f(y, θ)/f(y, θy)]

With samples (X1, y1), (X2, y2), · · · , (Xn, yn), the total deviance in GLM (residual deviance, the deviance
definition in the text book)

D+(y, µ̂) =
∑
i

D(yi, µ̂i)

= −2
∑
i

log
[
f(yi, θ̂i)/f(yi, θyi)

]
Null deviance: ∑

i

D(yi, ȳ)

where ȳ =
∑
i yi/n
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2.2 Deviance analysis for nested models

Consider the canonical link θ = Xβ where β ∈ Rp. Let β =

(
β(1)

β(2)

)
where β(1) ∈ Rp1 and X =

(
X(1) X(2)

)
.

We call M(1) with
θ = X(1)β(1)

a nested model of the full model M. Let β̂(1) be the MLE solution of the model M(∞) and µ̂(1) be the
corresponding estimated expectation of y in the fitted model.

Then,

D+(y, µ̂(1))−D+(y, µ̂) = −2
[
L(β̂(1))− L(β̂)

]
• Additivity theorem (Efron Annals 1978)

D+(µ̂, µ̂(1)) = D+(y, µ̂(1))−D+(y, µ̂)

– Need to prove that
∑
i(yi − µ̂i)

(
θµ̂i − θµ̂(1)

i

)
= 0

– Geometric interpretation for linear OLS

• Test for H0 : β(2) = 0. Under H0,

D+(µ̂, µ̂(1)) = D+(y, µ̂(1))−D+(y, µ̂)→ X 2
p−p1

• R2 in GLM:

1− D+(y, µ̂)∑
iD(yi, ȳ)

• Deviance analysis table

Next time: Chapter 4.5 and 4.7, computation, building GLM example


