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STAT347: Generalized Linear Models

Lecture 1

Today’s topics: Chapters 1, 4.1

• GLM concepts and examples

• Exponential family distributions for GLM

1 Components of a GLM

Data points (X1, y1), (X2, y2), · · · , (Xn, yn)

1. Random components: observations (y1, y2, · · · , yn) follow some distribution family and are independent

• Generalize yi from continuous real values to binary response, counts, categories, et. al.

• How to describe the distribution of y? We will start with assuming yi coming from an exponential
family distribution.

• Treat the covariates (X1, · · · , Xn) as fixed. For random X, build the model conditional on X.

2. Link function: g(E(yi)) = g(µi) = XT
i β where β = (β1, · · · , βp)T and Xi = (xi1, · · · , xip)T

• linear model: g(µi) = µi

• model for counts g(µi) = log(µi).

3. linear predictor: Xβ where X = (X1, X2, · · · , Xn)T is the n× p model matrix.

• X can include interactions, non-linear transformations of the observed covariates and the constant
term

• avoid causal interpretations of the coefficients β (read Chapter 1.2.3)

2 GLM v.s. data transformation

An alternative to GLM: transform yi in some h(yi) and build and solve a linear model h(yi) = XT
i β + εi.

• Sounds a reasonable approach, and is still commonly used now in various applications.

• If yi are counts, usually take h(yi) = log(yi). How to deal with yi = 0? How to transform binary or
categorical data? Also, the variance is not stabilized after transformation.

• Disadvantage of data transformation: need to find h that can make a linear model reasonable as well
as stabilizing the variance. (read Chapter 1.1.6)

• Advantage of data transformation in practice: easier to build models more complicated than a regres-
sion model if we think the transformed data are approximately Gaussian.

3 Example: the horseshoe crab

Chapters 1.5.1 and 1.5.3
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4 One-parameter exponential families

4.1 Definition

The observation yi follows a one-parameter exponential family distribution and has the density f(yi; θi) of
the form (“density” here including the possibility of discrete atoms.)

f(y; θ) = eyθ−b(θ)f0(y)

Terminologies:

• θ: natural or canonical parameters

• y: sufficient statistics

• b(θ): normalizing or cumulant function

• Chapter 4.1.1 Definition (4.1) is a more general family and includes dispersion parameters (such as the
variance parameter for Gaussian)

4.2 Moment relationships

Take the first and second derivative respect to θ for both sides of the equation

eb(θ) =

∫
eyθf0(y)dy

We can derive:
µ = E(y) = b′(θ); Vθ = Var(y) = b′′(θ)

This indicates that:
∂µ

∂θ
= Var(y) > 0

thus the mapping from θ to µ is one to one increasing.

4.3 Some well-known one-parameter exponential families

1. Normal with variance 1

2. Bernoulli

3. Binomial

4. Poisson

4.4 The canonical link function in GLM

Assume
θi = XT

i β

(Why? Easier calculations)

As µi = b′(θi), the link function will be
g(·) = (b′)−1(·)

which is called the canonical link.

Canonical link functions for Binomial, Poisson and Bernoulli distributions.

Next time: Chapter 4.2, ML estimation of GLM


