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STAT347: Generalized Linear Models

Lecture 15

Today’s topics: Survival analysis

• Parametric model for survival function estimation

• Log-rank test: compare between two survival curves

• Proportional hazards regression model

1 Parametric model for the survival functions

We can also assume that T follows some parametric distribution. The most common ones are

• Exponential distribution: f(t) = λe−λt(λ > 0)

Then the survival function is S(t) = e−λt and the hazard rate is h(t) = λ

• Weibull distribution: f(t) = κλtκ−1e−λt
κ

(λ, κ > 0)

Then the survival function is f(t) = e−λt
κ

and the hazard rate is h(t) = κλtκ−1

The Weibull distribution is relatively simple and allow the hazard rate to either increase/decrease with t.

How to estimate the unknown parameters? A very natural way is to maximize the likelihood, but there is
censoring and we only observe ys = min(Ts, Cs) for samples s = 1, 2, · · · , n.

1.1 Constructing the likelihood with censoring

For each sample s, assume we observe (ys, δs). We build a likelihood for each sample conditional on Cs (treat
Cs as fixed):

• If δs = 1, then we observe Ts = ys, the likelihood is Ls = f(ys) = S(ys)h(ys)

• If δs = 0, then we only observe Ts ≥ ys, the likelihood is Ls = S(ys)

Thus the total likelihood is

L =
∏
s

L(s) =

n∏
s=1

S(ys)h(ys)
ds

Specifically

• When Ts follows a common Exponential distribution with unknown parameter λ, L =
∏
s e
−λysλds .

The log-likelihood is

logL = −λ
∑
s

ys + log λ
∑
s

δs

The MLE is

λ̂ =

∑
s ds∑
s ys

When there is no censoring, it is 1 over the average death time.
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• When Ts follows a common Weibull distribution with unknown parameters λ and κ, L =
∏
s e
−λyκs [κλyκ−1s ]δs .

The log-likelihood is

logL = −λ
∑
s

yκs + (log κ+ log λ)
∑
s

δs + (κ− 1)
∑
s

δs log ys

In principle, we can still solve the score equations to find out MLE.

How can we check from the data whether we should use Exponential distribution or Weibull distribution?

• Likelihood ratio test

• Visualize the Kaplan-Meier curve

– Exponential distribution: logS(t) = −λt, we can check the linearity between t and log(Ŝ(t))

– Weibull distribution: log[− logS(t)] = log λ+κ log t, we can check the linearity between log t and

log[− log Ŝ(t)]

2 Log-rank test

How to compared between two distributions? In the NCOG data, how can we compare the survive curves
of Arm A vs Arm B? We may want to know if the whole survival curve of Arm B is significantly larger than
the whole curve of Arm A.

Here, we only consider the simplest null hypothesis: for two groups 1 and 2, we test if the two curves are
exactly the same:

H0 : S1(t) ≡ S2(t)

Let’s first discuss the discrete survival time, or we can discretize the survival time into bins. For each bin i
or discrete survival time i, assume we observe ri1 and ri2 samples that are still alive at the beginning of this
time bin for each group respectively, and di1 and di2 death during this time bin for two groups respectively.
Assume that drop-outs happen at the end of each time bin.

For each bin i, it is basically a 2× 2 table

death alive total at risk
Group 1 di1 ri1 − di1 ri1
Group 2 di2 ri2 − di2 ri2
Total di ri − di ri

The Cochran-Mantel-Haenszel log-rank test is to test whether the group has no effect on death rate in
each table. If the margins of this table are considered fixed, then under H0, di1 follows a Hypergeometric
distribution, with (check the Wikipedia page)

E(di1) =
di
ri
ri1, Var(di1) =

ri1ri2di(ri − di)
r2i (ri − 1)

The log-rank test statistics is

X2
CMH =

{
∑
i(di1 − ri1di/ri)}

2∑
i ri1ri2di(ri − di)/[r2i (ri − 1)]

Because across i the data is “almost independent”, asymptotically we have under H0, X2
CMH follows χ2

1,
and we can reject the hypotheses when X2

CMH is too large.

For continuous survival time, we can make the bin finer and finer, and in the limit, the Cochran-Mantel-
Haenszel log-rank test statistics is

X2
CMH =

{∑K
j=1(dj1 − rj1dj/rj)

}2

∑K
j=1 rj1rj2dj(rj − dj)/[r2j (rj − 1)]
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where {τ1, τ2, · · · τK} is the set of K distinct uncensored failure times observed in the sample including both
two groups, dj1 and dj2 are the number of death at τj for each group respectively, and rj1 and rj2 are
the total number of people who are at risk right before τj for each group respectively. rj = rj1 + rj2 and
dj = dj1 + dj2.

Some remarks:

• The asympotitics work when the total number of samples n goes to ∞, so we can have either a fixed
K or a growing number of K

• For each 2×2 table, there can be many different tests for the group effect or death, for example testing
for the odds ratio being 1 with a logistic regression, the challenge is to combine K different tables and
have valid inference when each yj is very small (exactly 1 when there is no tie).

• The CMH log-rank test is powerful when the survive curves does not across each other. It is most
powerful when h2(t) = αh1(t)

• the Log-rank test is non-parametric, and only depends on the ranks

• A class of weighted Log-rank tests:

X2
W =

{∑K
j=1 wj(dj1 − rj1dj/rj)

}2

∑K
j=1 w

2
j rj1rj2dj(rj − dj)/[r2j (rj − 1)]

3 Proportional hazards regression model

Finally, we deal with the covariates. For each sample s, we observe (ys, Xs, ds) where Xs is the covariate
(for example, group indicators). The proportional hazards (PH) model assumes that

hs(t) = eX
T
s βh0(t)

• The model is proposed by David Cox (1972, 1975)

• This is a semi-parametric model as we have no assumption on the baseline hazard function h0(t)

• X does not include the intercept for identifiablity

• proportional hazard:

log

{
hs(t)

h0(t)

}
= XT

s β

The benefit of building a model on the hazard rate instead of survival function is that the survival function
need to be less than 1, while the hazard rate does not have that constraint. The benefit of having a
proportional model is that there is no constraint on the range of β to have the hazard rate positive.

3.1 the Partial likelihood

For simplicity, we assume no ties. When there are ties, people use the same idea with some adjustments
(omitted here).

We look at each failure time, denote the risk set as R(t) = {s : ys ≥ t}, which is the set of people that is at
risk at time t. Then, for each ys with ds = 1 where the even is observed, there are R(ys) individuals that
are at risk, conditional on the fact that there is exactly one person die, the probability that individual s is
chosen is then

Ls =
hs(ys)∑

l∈R(ys)
hl(ys)

=
eX

T
s β∑

l∈R(ys)
eX

T
l β
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The partial likelihood for the samples is

L =
∏
s

Lδss

It is “partial” because it ignores all the non-events, times when nothing happened or there were losses to
follow-up.

Remember that the full likelihood is

L =
∏
s

L(s) =

n∏
s=1

Ss(ys)hs(ys)
δs =

n∏
s=1

(
hs(ys)∑

l∈R(ys)
hl(ys)

)δs  ∑
l∈R(ys)

hl(ys)

δs

Ss(ys)

If we ignore the last two terms in the product, we get the partial likelihood. Cox (1972) argued that the first
term in this product contained almost all of the information about β, while the last two terms contained
the information about h0(t), the baseline hazard. Efron further justifies this with reasonable assumptions
(Efron 1977, JASA 557–565).

3.2 Estimation and inference with the partial likelihood

The log-likelihood:

l(β) = logL =

n∑
s=1

δs

XT
s β − log

 ∑
t∈R(ys)

eX
T
s β




β̂ can be solved l̇(β) = 0 and people has taken a lot of effort to show that it has asymptotic distribution
(not a trivial result)

β̂
·∼ N(β, l̈(β̂)−1)


