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STAT347: Generalized Linear Models

Lecture 14

Today’s topics: Survival analysis

• Examples of survival analysis datasets

• Basic concepts in survival analysis: survival function, hazard rate, censoring

• Kaplan-Meier estimator of the survival function

1 Examples of survival analysis

1.1 NCOG study

A randomized clinical trial conducted by the Northern California Oncology Group (NCOG) compared two
treatments for head and neck cancer: chemotherapy (Arm A of the trial, n = 51 patients) and chemotherapy
plus radiation (Arm B, n = 45 patients). The data records the survival time in number of days past
treatment for each patient. The numbers followed by + patients still alive on their final day of observation.
For example, the sixth patient in Arm A was alive on day 74 after his treatment, and then “lost to follow-up”;
we only know that his survival time exceeded 74 days.

Arm A:
7 34 42 63 64 74+ 83 84 91 108 112

129 133 133 139 140 140 146 149 154 157 160
160 165 173 176 185+ 218 225 241 248 273 277

279+ 297 319+ 405 417 420 440 523 523+ 583 594
1101 1116+ 1146 1226+ 1349+ 1412+ 1417

Arm B:
37 84 92 94 110 112 119 127 130 133 140
146 155 159 169+ 173 179 194 195 209 249 281
319 339 432 469 519 528+ 547+ 613+ 633 725 759+
817 1092+ 1245+ 1331+ 1557 1642+ 1771+ 1776 1897+ 2023+ 2146+

2297+

• The main question: is the Arm B is more effective treatment than Art A?

• Instead of just compare the mean survival time, we would like to know more information about the
survival time distribution.

• How to deal with “lost to follow-up” (censoring) ?

1.2 Duration of nursing home stay

The National Center for Health Services Research studied 36 for-profit nursing homes to assess the effects
of different financial incentives on length of stay. “Treated” nursing homes received higher per diems for
Medicaid patients, and bonuses for improving a patient’s health and sending them home. Study included
1601 patients admitted between May 1, 1981 and April 30, 1982.

Variables include:
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• LOS - Length of stay of a resident (in days)

• AGE - Age of a resident

• RX - Nursing home assignment (1:bonuses, 0:no bonuses)

• GENDER - Gender (1:male, 0:female)

• MARRIED - (1: married, 0:not married)

• HEALTH - health status (2:second best - 5:worst)

• CENSOR - Censoring indicator (1:censored, 0:discharged)

Question: How do we find the treatment effect on stay length after adjusting for other covariates and
censoring?

2 Basic concepts

• Survival time: T is a random non-negative variable, the duration from the start of treatment to death.

– Continuous: T has a density function f(t)

– Discrete: T ∈ {0, 1, 2, 3, · · · }, fi = P (T = i)

• Survival function/curve: S(t) = P (T ≥ t)

– Continuous: S(t) =
∫∞
t
f(t′)dt′

– Discrete: Si =
∑
j≥i fj

• Hazard rate/function: h(t) = f(t)/S(t) (or hi = fi/Si for discrete T )

• Accumulative hazard function: H(t) =
∫ t
0
h(t) (or Hi =

∑
j≤i hj for discrete T )

The survive function and hazard rate provide more information than E(T ).

An important fact is that knowing one of the three functions of H(t), h(t) and S(t) will enable inferring the
other two functions.

Continuous case (homework):
S(t) = eH(t)

Discrete case:

Si =

i−1∏
j=0

P [T ≥ j + 1 | T ≥ j] =

i−1∏
j=0

(1− hj)

2.1 Censoring

For n samples, denote their survival time as T1, T2, · · · , Tn. However, we may not be able to observe every
Ti. Censoring can occur when

• When the study ends, some individual have not had the event yet (still alive)

• Some individuals dropout or get lost in the middle of the study.
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Typically, individuals do not enter the study at the same time, but it is usually not a concern as Ti is the
length of the observation time (can treat the starting time as a covariate to adjust for its possible effect).

A graphical representation of the data with censoring (in class)

Denote each sample’s censoring time as C1, C2, · · · , Cn. Then what we can actually observe for each sample
are Yi = min(Ti, Ci) and an indicator of whether censoring occurs:

δi =

{
1 if Ti ≤ Ci (observed death)

0 Otherwise

When each sample also has its covariate, what we observe can be denoted as (Yi, Xi, δi) for i = 1, 2, · · · , n.

Throughout the class, we only consider non-informative censoring, which is basically requiring

Ti ⊥ Ci | Xi

which means that the censoring time is not associated with the survival time, at least conditioning on other
known covariates Xi.

3 Estimating the survival function

In this section we consider the scenario when there is no observed covariates Xi and the survival time Ti are
i.i.d.

3.1 Non-parametric approach

When there is no censoring, then the survival function S(t) is a transformation of the cdf, thus we can
estimate it by the empirical cdf function.

Ŝn(t) =
1

n

∑
i

1Ti≥t

Example: the survival times are 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

Properties of Ŝn(t): as 1Ti≥t ∼ Bernoulli(S(t)), so that

• Ŝn(t) converges in probability to S(t) (consistency);

•
√
n
(
Ŝn(t)− S(t)

)
→ N(0, S(t)[1− S(t)]) in distribution.

However, when there is censoring this method does not work Example: the survival times are 1, 1, 2, 2+,
3+, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

We don’t know how to estimate S(4) from the empirical cdf approach in this example. There is a clever way
to do this.

3.1.1 Kaplan-Meier estimator

For the discrete survival time, or we can discretize the survival time into bins. For each bin i or discrete
survival time i, assume we observe ni samples that are still alive at the beginning of this time bin, di death
during this time bin and li drop-outs at the end of this time bin. Then, as the ri samples are i.i.d. at this
time point, we have

di ∼ Bernoulli(ri, hi)

thus an unbiased estimate of hi is

ĥi =
di
ri
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at the presence of non-informative censoring. The estimate of Si will be

Ŝi =
∏

j≤(i−1)

(1− ĥj)

For continuous survival time, the bin can be smaller and smaller, and we get the Kaplan-Meier estimator as

Ŝ(t) =
∏
j:τj≤t

rj − dj
rj

where {τ1, τ2, · · · τK} is the set of K distinct uncensored failure times observed in the sample, dj is the number
of death at τj and rj is the total number of people who are at risk right before τj .

The Greenwood formula for estimating the uncertainty in Ŝ(t):

log Ŝ(t) =
∑
j:τj≤t

log(1− ĥj)

V̂ar
(

log Ŝ(t)
)

=
∑
j:τj≤t

V̂ar(log(1− ĥj))

=
∑
j:τj≤t

(
1

1− ĥj

)
V̂ar(ĥj)

=
∑
j:τj≤t

ĥj

(1− ĥj)rj
=
∑
j:τj≤t

dj
(rj − dj)rj

V̂ar
(
Ŝ(t)

)
= [Ŝ(t)]2V̂ar

(
log(Ŝ(t))

)
= [Ŝ(t)]2

∑
j:τj≤t

dj
(rj − dj)rj


