STAT347: Generalized Linear Models
Lecture 14

Today’s topics: Survival analysis
e Examples of survival analysis datasets
e Basic concepts in survival analysis: survival function, hazard rate, censoring

e Kaplan-Meier estimator of the survival function

1 Examples of survival analysis

1.1 NCOG study

A randomized clinical trial conducted by the Northern California Oncology Group (NCOG) compared two
treatments for head and neck cancer: chemotherapy (Arm A of the trial, n = 51 patients) and chemotherapy
plus radiation (Arm B, n = 45 patients). The data records the survival time in number of days past
treatment for each patient. The numbers followed by + patients still alive on their final day of observation.
For example, the sixth patient in Arm A was alive on day 74 after his treatment, and then “lost to follow-up”;
we only know that his survival time exceeded 74 days.
Arm A:
7 34 42 63 64 T4+ 83 84 91 108 112
129 133 133 139 140 140 146 149 154 157 160
160 165 173 176 185+ 218 225 241 248 273 277
279+ 297 319+ 405 417 420 440 523 523+ 583 594
1101 1116+ 1146 12264+ 1349+ 1412+ 1417
Arm B:
37 84 92 94 110 112 119 127 130 133 140
146 155 159 169+ 173 179 194 195 209 249 281
319 339 432 469 519 528+ 547+ 613+ 633 725 759+
817 10924+ 12454+ 1331+ 1557 16424 17714+ 1776 1897+ 20234 2146+
2297+

e The main question: is the Arm B is more effective treatment than Art A?

e Instead of just compare the mean survival time, we would like to know more information about the
survival time distribution.

e How to deal with “lost to follow-up” (censoring) ?

1.2 Duration of nursing home stay

The National Center for Health Services Research studied 36 for-profit nursing homes to assess the effects
of different financial incentives on length of stay. “Treated” nursing homes received higher per diems for
Medicaid patients, and bonuses for improving a patient’s health and sending them home. Study included
1601 patients admitted between May 1, 1981 and April 30, 1982.

Variables include:
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e LOS - Length of stay of a resident (in days)

e AGE - Age of a resident

e RX - Nursing home assignment (1:bonuses, 0:no bonuses)
e GENDER - Gender (1:male, 0:female)

e MARRIED - (1: married, 0:not married)

e HEALTH - health status (2:second best - 5:worst)

e CENSOR - Censoring indicator (1:censored, 0:discharged)

Question: How do we find the treatment effect on stay length after adjusting for other covariates and
censoring?

2 Basic concepts

Survival time: T is a random non-negative variable, the duration from the start of treatment to death.

— Continuous: T has a density function f(t)
— Discrete: T € {0,1,2,3,---}, fi = P(T =1)

Survival function/curve: S(t) = P(T > t)

— Continuous: S(t) = [ f(t')dt’
— Discrete: S; =3 ., f;

e Hazard rate/function: h(t) = f(t)/S(t) (or h; = f;/S; for discrete T')

Accumulative hazard function: H(t) = fot h(t) (or H; = 3, ; h; for discrete T)

The survive function and hazard rate provide more information than E(T).

An important fact is that knowing one of the three functions of H(t), h(t) and S(¢) will enable inferring the
other two functions.

Continuous case (homework):

S(t) = eH®
Discrete case: i1 i1
Si=[[PIT=j+1|T>4=][0-h)
§=0 j=0
2.1 Censoring
For n samples, denote their survival time as Ty, 75, --- ,T,. However, we may not be able to observe every

T;. Censoring can occur when

e When the study ends, some individual have not had the event yet (still alive)

e Some individuals dropout or get lost in the middle of the study.



3 STAT347, 2020 — Lecture 14

Typically, individuals do not enter the study at the same time, but it is usually not a concern as T; is the
length of the observation time (can treat the starting time as a covariate to adjust for its possible effect).

A graphical representation of the data with censoring (in class)

Denote each sample’s censoring time as Cy,Cs, - - -, C},. Then what we can actually observe for each sample
are Y; = min(7;, C;) and an indicator of whether censoring occurs:

1T <G (observed death)
10 Otherwise

When each sample also has its covariate, what we observe can be denoted as (Y;, X;,6;) for i =1,2,---  n.

Throughout the class, we only consider non-informative censoring, which is basically requiring

which means that the censoring time is not associated with the survival time, at least conditioning on other
known covariates X;.

3 Estimating the survival function

In this section we consider the scenario when there is no observed covariates X; and the survival time T} are
ii.d.

3.1 Non-parametric approach

When there is no censoring, then the survival function S(¢) is a transformation of the cdf, thus we can
estimate it by the empirical cdf function.

. 1
Salt) = — > lnse

Example: the survival times are 1, 1, 2, 2, 3, 4,4, 5,5, 8,8, 8,8, 11, 11, 12, 12, 15, 17, 22, 23
Properties of Sy (t): as 17,>¢ ~ Bernoulli(S(t)), so that

e S, (t) converges in probability to S(t) (consistency);
o Jn (§n (t) — S(t)) — N(0, S(t)[1 — S(¢))) in distribution.

However, when there is censoring this method does not work Example: the survival times are 1, 1, 2, 2+,
3+,4,4,5,5,8,8,8, 8, 11, 11, 12, 12, 15, 17, 22, 23

We don’t know how to estimate S(4) from the empirical cdf approach in this example. There is a clever way
to do this.

3.1.1 Kaplan-Meier estimator

For the discrete survival time, or we can discretize the survival time into bins. For each bin i or discrete
survival time 4, assume we observe n; samples that are still alive at the beginning of this time bin, d; death
during this time bin and [; drop-outs at the end of this time bin. Then, as the r; samples are i.i.d. at this
time point, we have

d; ~ Bernoulli(r;, h;)

thus an unbiased estimate of h; is
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at the presence of non-informative censoring. The estimate of S; will be

J<(i=1)
For continuous survival time, the bin can be smaller and smaller, and we get the Kaplan-Meier estimator as
. ri —d.
S(t) = 2
=11 ">
g <t

where {71, 79, - Tx } is the set of K distinct uncensored failure times observed in the sample, d; is the number
of death at 7; and r; is the total number of people who are at risk right before 7.

The Greenwood formula for estimating the uncertainty in S (t):

log S(t) = Z log(1 — h;)

g <t

Var (log 5(1)) = Y Var(log(1 &)

g <t
1 —~
= Z < = ) Var(h;)
g <t 1- hj



