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STAT347: Generalized Linear Models

Lecture 12

Today’s topics: Chapters 9.1-9.3

• Correlated samples /responses in GLM

• Normal linear mixed effect models (LMM)

– Random intercept and random slope models

– Hierarchical models for a multi-level design

– Model estimation: MLE, REML and BLUP

1 Modeling correlated responses

For the responses: y1, y2, · · · , yn, we have assumed independence, but some samples may be correlated.
Examples:

• Kids of one mom, longitudinal data for one individual

• Students in the same classroom with many classrooms

• Multiple individuals measured in one day with many different days

Form of the data: there are i = 1, 2, · · · , n groups (individuals / classrooms / days), and each of them has
s = 1, 2, · · · , di samples. The response is denoted as yis with its covariates xis.

Marginal GLM model:
g (E(yis)) = g(µis) = Xisβ

Within the same i, (yi1, · · · , yidi) are correlated.

Generalized linear mixed model:

g[E(yis | ui)] = XT
isβ + ZTisui

• We assume that the responses (yi1, · · · , yidi) are correlated because they share the same latent random
variable ui

• Zis are some known covaraites like Xis, Z
T
isui models that the influences of ui on different samples

depend on some covariate Zis

• The most common model: Zis = 1 assuming that all group members share the same random effect.

2 Normal linear mixed models

yis = XT
isβ + ZTisui + εis

• β is a length p vector, and is for fixed effects
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• ui
i.i.d.∼ N(0,Σu) can be a vector when Zis is a vector. It models the random effects

• εis
i.i.d.∼ N(0, σ2

e) are the individual randomness of each sample

Matrix form for each group i:
yi = Xiβ + Ziui + εi

where

yi =

 yi1
...
yidi

 , Xi =

XT
i1
...

XT
idi

 , Zi =

ZTi1
...

ZTidi

 , εi =

 εi1
...
εidi


2.1 Random intercept and random slope models

Random intercept model:
yis = XT

isβ + ui + εij

• Matrix form for each group i:
yi = Xiβ + ui1 + εi

and Var(yi) = σ2
u11T + σ2

eI

• for any s 6= k

corr(yis, yik) =
σ2
u

σ2
u + σ2

e

≥ 0

Linear model with random intercept and random slope

Example: a clinical study understanding the effect of a drug treating veterans suffering from chronic alcohol
dependence.

• Each individual (veteran) is measured at for time points: 4, 26, 52 and 78 weeks

• Total number of veterans: 627

• The response is a financial satisfaction score

• Each individual is randomly assigned to the drug treatment or placebo treatment

• Two covariates: whether the individual takes the drug or not, the time point

• There are in total 726× 4 observations: yis

In our model, we want to consider three aspects: 1. the drug may have a different effect at different time
points; 2. the four measures for the same individual are correlated; 3. individuals can have a different
baseline satisfactory score and time may have a different effect for each individuals. We build the following
model:

yis = (β0 + ui1) + (β1 + ui2)ts + β2xi + β3tsxi + εis

• ts = log(week number + 1), xi is whether the individual takes the drug or not

• In terms of the general form of the LMM model, here Zis = (1, ts) and ui = (ui1, ui2)
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2.2 Hierarchical models for a multi-level design

A lot of social / life science experiments have a complicated design structure. Let’s take the smoking pre-
vention and cessation study (Chapter 9.2.3) as an example. 1600 students are collected from 135 classrooms
in 28 schools. We want to understand the effect of SC (exposure to a school-based curriculum or not), TV
(exposure to a television-based prevention program or not) and previous THK scale on the current THK
scale. We have 1600 samples, but some share the same school and some share the same classroom.

The multilevel model:

yics = β0 + β1PTHKics + β2SCics + β3TVics + us + vcs + εics

• School effect: us
i.i.d.∼ N(0, σ2

u)

• classroom effects: vcs
i.i.d.∼ N(0, σ2

v)

• individual randomness: εics
i.i.d.∼ N(0, σ2

e)

• Correlation between students in the same classroom: for any i 6= i′

corr(yics, yi′cs) =
σ2
u + σ2

v

σ2
u + σ2

v + σ2
e

• Correlation between students in the same school but different classrooms: for any c 6= c′, i1, i2

corr(yi1cs, yi2c′s) =
σ2
u

σ2
u + σ2

v + σ2
e

3 Model estimation

3.1 Estimation of β: MLE

Matrix form of the LMM for the whole dataset:

y = Xβ + Zu+ ε

Here y, u and ε are long vectors, and X and Z are matrices (Chapter 9.3.1).

y =

y1...
yn

 , X =

X1

...
Xn

 , Z =


Z1 0 · · · 0
0 Z2 · · · 0

0 0
. . . 0

0 0 · · · Zn

 , u =

u1...
un

 , ε =

ε1...
εn


Marginally, y follows the distribution that

y ∼ N(Xβ,ZΣuZ
T +Rε)

where here Rε = σ2
eI and Σu = diag(Σu, · · · ,Σu).

Define V = ZΣuZ
T +Rε, if V is known, then then we have a closed-form MLE solution for β, which is

β̃ = β̃(V ) = (XTV −1X)−1XTV −1y

In practice, V is unknown, we will plug in an estimate V̂ and use the estimate

β̂ = β̃(V̂ )

How to find V̂ ?
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3.2 Estimation of V : residual ML (REML)

How can we estimate V without knowing β?

The projection matrix in linear regression: PX = X(XTX)−1XT . Remember that the residuals of least
square in linear regression is

(I − PX)y = (I −X(XTX)−1XT )y

Under the LMM model, we have

Ly = (I − PX)y = (I −X(XTX)−1XT )y = (I − PX)(Zu+ ε)

where we define L = I − PX . We know that

Ly ∼ N(0, LV LT )

thus the likelihood of Ly does not involve β and we can maximize this likelihood to find the estimate of V .

3.3 Predictions of each ui: best linear unbiased predictor (BLUP)

Why do we want to predict ui? We may be interested in finding the groups that has high/low effects.

• We use “prediction” instead of “estimation” as in LMM, ui are random varibles instead of unknown
parameters

• You may wonder why using LMM instead of treating each ui as a fixed parameter.

• Compared with using just a fixed effect model treating each group as an indicator, in LMM we addi-
tionally assume ui ∼ N(0,Σu)

• Benefits of LMM:

– Reduce the number of parameters

– Groups can borrow information from each other. Say a group i may have 2 samples, if we treat
ui as a parameter, then there are only two samples to estimate ui, which can provide very bad
estimates.

We predict each ui by an estimate of its posterior mean:

ûi = Ê[ui | y]

The joint distribution of y and u is(
y
u

)
∼ N

[(
Xβ
0

)
,

(
ZΣuZ

T +Rε ZΣu

ΣuZ
T Σu

)]
From above we can get the conditional distribution u | y which also follows a Normal distribution, the
conditional expectation is

E[u | y] = ΣuZ
T (ZΣuZ

T +Rε)
−1(y −Xβ) = ΣuZ

TV −1(y −Xβ)

When V is known, our prediction will be

û = ΣuZ
TV −1[I −X(XTV −1X)−1XTV −1]y

which is the best linear unbiased predictor (BLUP).

In practice, V is not known, we can plug in the estimate of V (and Σu) from REML and get the predictor

û = Σ̂uZ
T V̂ −1[I −X(XT V̂ −1X)−1XT V̂ −1]y

Next time: generalized mixed effect models, mixed effect model examples


