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STAT347: Generalized Linear Models

Lecture 11

Today’s topics: Chapters 8

• Negative Binomial GLM and Beta-Binomial GLM

• Quasi-likelihood

• Estimating equations and the Sandwich estimator

1 The over-dispersion phenomenon

When we apply the standard GLM models assuming the data are Binomial or Poisson distributed to real
data, we always find over-dispersion. Let v?(yi) be the variance of yi under our model assumption.

• v?(yi) = nipi(1− pi) for Binomial data and v?(yi) = µi for Poisson counts.

• Over-dispersion: the actual Var(yi) > v?(yi).

• We can check whether there is over-dispersion by plotting v̂?(yi) V.S. (yi − µ̂i)2

• When this happens, it means that our assumption for the randomness of yi is problematic.

1.1 Negative Binomial distribution for dispersed counts

This is what we have covered in Lecture 10.

• Negative binomial distribution: yi ∼ Poisson(λi) and λ ∼ Gamma(µi, ki). Then yi ∼ NB(µi, ki)

• We have E(yi) = µi and Var(yi) = µi + γiµ
2
i where γi = 1/ki is the dispersion parameter.

• NB GLM: we assume that log(µi) = XT
i β and γi ≡ γ.

1.2 Beta-Binomial distribution for dispersed Binary data

For the ungrouped Binary data, previous Binary GLM assumed that conditional on having the same Xi, the
yi are i.i.d. Bernoulli trials. But what if the samples are clustered? (Read Chapter 8.2.1).

We may still assume independent grouped data samples, but the individual within each group are allowed
to be correlated.

Consider the grouped data. Analogous to the Poisson case, we can have the scenario yi ∼ Binomial(ni, pi)
but logit(pi) = XT

i β + εi. We will then have

Var(yi) > nipi(1− pi)

The Beta-binomial distribution assumes that y ∼ Binomial(n, p) and p ∼ beta(α1, α2). The beta distribution
of p has the density function:

f(p;α1, α2) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
pα1−1(1− p)α2−1
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and
E(p) = µ =

α1

α1 + α2

The Beta-binomial distribution then has the property that

E(y) = nµ, Var(y) = nµ(1− µ)

[
1 + (n− 1)

θ

1 + θ

]
where θ = 1/(α1 + α2).

Beta-binomial GLM: we assume the grouped data follows yi ∼ Beta-binomial(µi, θ). The relation between
µi and Xi are the same as we assumed for the standard binary GLM. For example:

logit(µi) = XT
i β

Both β and θ are unknown but we can estimate using MLE.

2 Quasi-likelihood

Remind the the score equation for the exponential family distributed data is:

∂L

∂βj
=
∑
i

(yi − µi)xij
Var(yi)

1

g′(µi)
= 0

• These score equations only involve E(yi) = µi and Var(yi).

• We may be OK with the link function, so we are OK with the forms of µi and g′(µi) as functions of β.

• However, the form of Var(yi) does not fit the data as we see phenomenons like over-dispersion.

• Quasi-likelihood: we replace Var(yi) by some other mean-variance relationship that typically involves
another unknown dispersion parameter.

• Here, we DO NOT assume any other aspects of the distribution of yi besides mean and variance.

Common forms of mean-variance relationship Var(yi) = a(µi, φ):

• Proportional: a(µi, φ) = φv?(µi).

– counts: assume a(µi, φ) = φµi

– grouped Binary data: a(µi, φ) = φµi(ni − µi)/ni

• For counts we can also assume a(µi, φ) = µi + φµ2
i

• For grouped Binary data we can also assume a(µi, φ) = µi(ni − µi) (1 + (ni − 1)φ)

Some related properties:

• The proportional mean-variance relationship is the easiest for the computation of β̂ as φ cancels and
does not affect solving the “score” equations.

• Var(β̂) is affected by φ for any of the above mean-variance relationships.

• The purpose to include φ is to get the correct estimate of the accuracy of β̂.

How to estimate φ?
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• When a(µi, φ) = φv?(µi), we can get β̂ thus µ̂i first without knowing φ. Then define

X2 =

n∑
i=1

(yi − µ̂2
i )

2

φv?(µ̂i)

we can solve φ by solving X2 = n− p, which is

φ̂ =
1

n− p

n∑
i=1

(yi − µ̂2
i )

2

v?(µ̂i)

• For other forms of a(µ, φ), we need to solve φ and β simultaneously. How to do that?

3 Estimation equations and Sandwich estimator

In quasi-likelihood, we have p equations for β:

n∑
i=1

(yi − µi)xij
a(µi, φ)

1

g′(µi)
= 0

These are not the likelihood score equations, but they are called estimation equations as we solve them to
get an estimate of β.

As φ is also unknown, we have p+ 1 parameters and we need one more equation for φ. Typically, we use the
equation

n∑
i=1

(yi − µ2
i )

2

a(µi, φ)
− (n− p) = 0

So now we have p+ 1 equations for p+ 1 parameters.

How to estimate Var(β) without assuming the full distribution of the data?

Consider the general form of the estimating equations for parameters θ (here θ = (β, φ)):

u(θ) =
∑
i

ui(θ) = 0

Denote the solution of these equations as θ̂ and the true θ as θ0.

• Consistency: roughly speaking, when p is small, if E(u(θ0)) → 0 when n → ∞, then we can have

θ̂ → θ0.

• Variance of θ̂. Under consistency, we can estimate the asymptotic variance of θ̂ by delta method.

By Delta method, we have
0 = u(θ̂) ≈ u(θ0) + u̇(θ0)(θ̂ − θ0)

Thus, we have
θ̂ − θ0 ≈ −u̇(θ0)−1u(θ0)

Roughly speaking, we have

• Law of large numbers:

1

n
u̇(θ0) =

1

n

n∑
i=1

u̇i(θ0)→ E

(
1

n

n∑
i=1

u̇i(θ0)

)
= A
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• CLT:
1√
n
u(θ0) =

1√
n

n∑
i=1

ui(θ0) ≈ N(0, V )

Thus
Var(θ̂) ≈ A−1V A−T /n

In practice, we estimate A and V by

Â =
1

n

n∑
i=1

u̇i(θ̂)

and

V̂ =
1

n

∑
i

ui(θ̂)ui(θ̂)
T

Next time: Examples of dispersed data and quasi-likelihood, mixed effect linear model


